viernes, 23 de marzo de 2018

Additive Manufacturing to create metallic glass alloys


Researchers have now demonstrated and exposed in the paper "Additive Manufacturing of an iron-based bulk metallic glass larger than the critical casting thickness," the ability to create amorphous metal, or metallic glass, alloys using 3D Printing technology, opening the door to a variety of applications in the UAV industry, such as more efficient electric motors, better wear-resistant materials, higher strength materials, and lighter weight structures. The paper is published in the journal Applied Materials Today. The paper was co-authored by Harvey West, Timothy Horn and Christopher Rock of NC State; Lena Thorsson, Mattias Unosson and Peter Skoglund of Sindre Metals; and Evelina Vogli of Liquidmetal Coatings. The work was done with support from the National Science Foundation under grant number 1549770.

The technique works by applying a laser to a layer of metal powder, melting the powder into a solid layer that is only 20 microns thick. The "build platform" then descends 20 microns, more powder is spread onto the surface, and the process repeats itself. Because the alloy is formed a little at a time, it cools quickly - retaining its amorphous qualities. However, the end result is a solid, metallic glass object - not an object made of laminated, discrete layers of the alloy.