Using UAVs, datasets can be captured flexibly and at high spatial and temporal resolutions when needed.
In forestry applications, fundamental tasks include the detection of individual trees, tree species classification, biomass estimation, etc. Deep Neural Networks (DNN) have shown superior results when comparing with conventional machine learning methods such as MLP (Multi-Layer Perceptron) in cases of huge input data.
The objective of this research is to investigate 3D Convolutional Neural Networks (3D-CNN) to classify three major tree species in a boreal forest: pine, spruce, and birch. The proposed 3D-CNN models were employed to classify tree species in a test site in Finland. The classifiers were trained with a dataset of 3039 manually labelled trees. Then the accuracies were assessed by employing independent datasets of 803 records.
To find the most efficient set of feature combination, it was compared the performances of 3D-CNN models trained with HS (HyperSpectral) channels, Red-Green-Blue (RGB) channels, and Canopy Height Model (CHM), separately and combined. It is demonstrated that the proposed 3D-CNN model with RGB and HS layers produces the highest classification accuracy. The producer accuracy of the best 3D-CNN classifier on the test dataset were 99.6%, 94.8%, and 97.4% for pines, spruces, and birches, respectively.
The best 3D-CNN classifier produced ~5% better classification accuracy than the MLP with all layers. The results suggest that the proposed method provides excellent classification results with acceptable performance metrics for HS datasets. The results show that pine class was detectable in most layers. Spruce was most detectable in RGB data, while birch was most detectable in the HS layers. Furthermore, the RGB datasets provide acceptable results for many low-accuracy applications.
Read more at: https://www.mdpi.com/2072-4292/12/7/1070